Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Vertebrate life histories evolve in response to selection imposed by abiotic and biotic environmental conditions while being limited by genetic, developmental, physiological, demographic and phylogenetic processes that constrain adaptation. Despite the well-recognized shifts in selective pressures accompanying transitions among environments, the conditions driving innovation and the consequences for life-history evolution remain outstanding questions. Here we compare the traits of vertebrates that occupy aquatic or terrestrial environments as juveniles to infer shifts in evolutionary constraints that explain differences in their life-history traits and thus their fundamental demographic rates. Our results emphasize the reduced potential for life-history diversification on land, especially that of reproductive strategies, which limits the scope of viable life-history strategies. Moreover, our study reveals differences between the evolution of viviparity in aquatic and terrestrial realms. Transitions from egg laying to live birth represent a major shift across life-history space for aquatic organisms, whereas terrestrial egg-laying organisms evolve live birth without drastic changes in life-history strategy. Whilst trade-offs in the allocation of resources place fundamental constraints on the way life histories can vary, ecological setting influences the position of species within the viable phenotypic space available for adaptive evolution.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Detecting declines and quantifying extinction risk of long‐lived, highly fecund vertebrates, including fishes, reptiles, and amphibians, can be challenging. In addition to the false notion that large clutches always buffer against population declines, the imperiled status of long‐lived species can often be masked by extinction debt, wherein adults persist on the landscape for several years after populations cease to be viable. Here we develop a demographic model for the eastern hellbender (Cryptobranchus alleganiensis), an imperiled aquatic salamander with paternal care. We examined the individual and interactive effects of three of the leading threats hypothesized to contribute to the species' demise: habitat loss due to siltation, high rates of nest failure, and excess adult mortality caused by fishing and harvest. We parameterized the model using data on their life history and reproductive ecology to model the fates of individual nests and address multiple sources of density‐dependent mortality under both deterministic and stochastic environmental conditions. Our model suggests that high rates of nest failure observed in the field are sufficient to drive hellbender populations toward a geriatric age distribution and eventually to localized extinction but that this process takes decades. Moreover, the combination of limited nest site availability due to siltation, nest failure, and stochastic adult mortality can interact to increase the likelihood and pace of extinction, which was particularly evident under stochastic scenarios. Density dependence in larval survival and recruitment can severely hamper a population's ability to recover from declines. Our model helps to identify tipping points beyond which extinction becomes certain and management interventions become necessary. Our approach can be generalized to understand the interactive effects of various threats to the extinction risk of other long‐lived vertebrates. As we face unprecedented rates of environmental change, holistic approaches incorporating multiple concurrent threats and their impacts on different aspects of life history will be necessary to proactively conserve long‐lived species.more » « less
An official website of the United States government
